If #vecu=(3,-1)# and #vecv=(-6,4)#, then how do you find the angle between #u# and #v# vectors?

If #vecu=(3,-1)# and #vecv=(-6,4)#, then how do you find the angle between #u# and #v# vectors?

2 Answers
Jun 14, 2018

See below

Explanation:

We know that dot product of two vectors is defined as

#vecv·vecu=abs(u)·abs(v)·costheta# (1)

with #theta# angle between both vectors

By other hand, we know also that #absu=sqrt(u_1^2+u_2^2#

Then #absu=sqrt(9+1)=sqrt10#
#absv=sqrt(36+16)=sqrt52#

And #vecv·vecu=v_1u_1+v_2u_2=abs(u)·abs(v)·costheta# (1)

Applying this to our case

#vecu·vecv=-18-4=-22# (2)

#vecu·vecv=sqrt10·sqrt52·costheta# (3)

Combining (2) and (3) #costheta=-22/(sqrt10·sqrt52)=-0.96476382#

#theta=arccos -0.96476382=164º 44´41.57´´#

Jun 14, 2018

Compute the dot product using #vecu*vecv=(u_x)(v_x)+(u_y)(v_y)#
Compute the magnitudes, #|vecu| and |vecv|#
Use the dot product formula, #vecu*vecv= |vecu||vecv|cos(theta)#, to find the angle.

Explanation:

Compute the dot product using #vecu*vecv=(u_x)(v_x)+(u_y)(v_y)#

#vecu*vecv=(3)(-6)+(-1)(4)#

#vecu*vecv=-22#

Compute the magnitudes, #|vecu| and |vecv|#

#|vecu| = sqrt(u_x^2+u_y^2)#

#|vecu| = sqrt(3^2+(-1)^2)#

#|vecu| = sqrt10#

#|vecv| = sqrt(v_x^2+v_y^2)#

#|vecv| = sqrt((-6)^2+4^2)#

#|vecv| = 2sqrt13#

Use the dot product formula, #vecu*vecv= |vecu||vecv|cos(theta)#, to find the angle.

#-22= (sqrt10)(2sqrt13)cos(theta)#

#theta = cos^-1(-22/((sqrt10)(2sqrt13)))#

#theta = cos^-1(-22/((sqrt10)(2sqrt13)))#

#theta = 164.7^@#