Find the value of #cos(tan^(-1)(2)+tan^(-1)(3))#?

2 Answers
Feb 5, 2017

#cos(tan^-1(2)+tan^-1(3))=-1/sqrt2#

Explanation:

First use the cosine angle-addition formula:

#cos(a+b)=cos(a)cos(b)-sin(a)sin(b)#

Then the original expression equals:

#=cos(tan^-1(2))cos(tan^-1(3))-sin(tan^-1(2))sin(tan^-1(3))#

Note that if #theta=tan^-1(2)#, then #tan(theta)=2#. That is, a right triangle with angle #theta# has #tan(theta)=2#, which is the triangle with the leg opposite #theta# being #2# and the leg adjacent to #theta# being #1#. The Pythagorean theorem tells us that the hypotenuse of this triangle is #sqrt5#.

So, when #theta=tan^-1(2)#, we see that:

#cos(tan^-1(2))=cos(theta)="adjacent"/"hypotenuse"=1/sqrt5#

#sin(tan^-1(2))=sin(theta)="opposite"/"hypotenuse"=2/sqrt5#

Now let angle #phi# be defined by #phi=tan^-1(3)#, such that #tan(phi)=3#. This is the right triangle with:

#{("opposite"=3),("adjacent"=1),("hypotenuse"=sqrt10):}#

Then:

#cos(tan^-1(3))=cos(phi)="adjacent"/"hypotenuse"=1/sqrt10#

#sin(tan^-1(3))=sin(phi)="opposite"/"hypotenuse"=3/sqrt10#

Plugging these into the expression from earlier we get:

#=1/sqrt5(1/sqrt10)-2/sqrt5(3/sqrt10)#

Note that #sqrt5(sqrt10)=sqrt50=5sqrt2#:

#=(1-6)/(5sqrt2)=-1/sqrt2#

Feb 7, 2017

#cos(tan^(-1)(2)+tan^(-1)(3))=-1/sqrt2#

Explanation:

Let #tan^(-1)(2)=alpha# and #tan^(-1)(3)=beta#

Therefore #tanalpha=2# and #tanbeta=3#

As #tan(pi/4)=1#, #alpha# and #beta# lie between #pi/4# and #pi/2#

and hence #(alpha+beta)# lies in Q2.

and #tan(alpha+beta)=(tanalpha+tanbeta)/((1-tanalphatanbeta)#

= #(2+3)/(1-2xx3)=5/(-5)=-1# and #(alpha+beta)=(3pi)/4#

Hence, #cos(tan^(-1)(2)+tan^(-1)(3))=cos((3pi)/4)=-1/sqrt2#