How do you solve #sin^2theta - cos^2theta = 0#?

2 Answers
Mar 14, 2017

#pi/4 + kpi#
#(3pi)/4 + kpi#

Explanation:

From the trig identity:
#cos^2 t - sin^2 t = cos 2t#, we get:
#sin^2 t - cos^2 t = - cos2t = 0#
Unit circle gives 2 solutions:
#cos 2t = 0 --> #2t = pi/2 + 2kpi#, and #2t = (3pi)/2 + 2kpi# a. #2t = pi/ + 2kpi# --> #t = pi/4 + kpi# b. #2t = (3pi)/2 + 2kpi# --> #t = (3pi)/4 + kpi#

Mar 15, 2017

Here's an alternate answer. Recall the identity #sin^2theta + cos^2theta = 1#. If you rearrange for #cos^2theta#, you should get #cos^2theta = 1-sin^2theta#.

Substituting, we have:

#sin^2theta - (1 - sin^2theta) = 0#

#sin^2theta - 1 + sin^2theta = 0#

#2sin^2theta = 1#

#sin^2theta = 1/2#

#sintheta = +- 1/sqrt(2)#

Now consider the #1-1-sqrt(2)# right triangle. This means that

#theta = pi/4 +2pin, (3pi)/4 + 2pin, (5pi)/4 + 2pin and (7pi)/4 + 2pin#

Note the period of the sine function is #2pi#.

Hopefully this helps!