Question #a06e9

1 Answer
Mar 25, 2017

#intsec(x+a)dx=ln(abs(sec(x+a)+tan(x+a)))+C#

Explanation:

You may know the straightaway rule:

#intsec(t)dt=ln(abs(sec(t)+tan(t)))+C#

In case you don't, we can derive this rule and solve your problem simultaneously.

#intsec(x+a)dx#

This is a difficult move to foresee, which is why it's likely a good move to memorize the secant integral. But, we can do the integration by multiplying the numerator and denominator by #sec(x+a)+tan(x+a)#:

#=intsec(x+a)(sec(x+a)+tan(x+a))/(sec(x+a)+tan(x+a))dx#

#=int(sec^2(x+a)+sec(x+a)tan(x+a))/(sec(x+a)+tan(x+a))dx#

Now, let #u=sec(x+a)+tan(x+a)#. Its derivative is: #du=(sec(x+a)tan(x+a)+sec^2(x+a))dx#.

Note that #u# is the denominator and #du# is the numerator:

#=int(du)/u#

Which is the natural logarithm integral:

#=ln(absu)+C#

So:

#=ln(abs(sec(x+a)+tan(x+a)))+C#

Which follows the rule #intsec(t)dt=ln(abs(sec(t)+tan(t)))+C# if you, from the outset, let #t=x+a# implying that #dt=dx#.