How do we show that #(sinx - cosx)/sinx + (cosx -sinx)/cosx = 2 - secxcscx#?

1 Answer
Apr 10, 2017

Put the left-hand side on a common denominator and convert the right hand side to sine and cosine (using #secx = 1/cosx# and #cscx = 1/sinx)#.

#(sinx - cosx)/sinx + (cosx - sinx)/cosx = 2 - (1/cosx)(1/sinx)#

#(cosx(sinx - cosx))/(sinxcosx) + (sinx(cosx - sinx))/(sinxcosx) = 2 - 1/(sinxcosx)#

#(cosxsinx - cos^2x + cosxsinx - sin^2x)/(sinxcosx) = 2 - 1/(sinxcosx)#

#(2cosxsinx - (cos^2x + sin^2x))/(sinxcosx) = 2 - 1/(sinxcosx)#

Now put the right-hand side on a common denominator and use the identity #sin^2x + cos^2x = 1# to simplify the left-hand side.

#(2cosxsinx - 1)/(sinxcosx) = (2(sinxcosx) - 1)/(sinxcosx)#

#(2cosxsinx - 1)/(sinxcosx) = (2sinxcosx - 1)/(sinxcosx)#

This is obviously true, so we have proven the identity.

Hopefully this helps!