How do I prove that #(tanx-sinx)/(tanxsinx)=(1-cosx)/sinx#?

2 Answers
May 10, 2017

See below.

Explanation:

Formatted question: Prove #(1-cosx)/sinx=(tanx-sinx)/(tanxsinx)#

Since the right-hand side (RHS) appears more complicated, we will start with that side.

Consider that #tanx=sinx/cosx#. We can substitute this in for the #tanx# in the numerator and denominator:
#RHS=((sinx/cosx)-sinx)/((sinx/cosx)sinx)#

By simplifying:
#=((sinx/cosx)-(sinxcosx)/cosx)/(sin^2x/cosx)#
#=((sinx-sinxcosx)/cosx)/(sin^2x/cosx)#
#=(((sinx(1-cosx))/cosx)*(cosx/sin^2x)#

We can cancel one of #sinx#'s and the #cosx# from the numerator and denominator since we are multiplying the two fractions:
#=(1-cosx)/sinx=LHS#

#therefore# #(1-cosx)/sinx=(tanx-sinx)/(tanxsinx)#

May 10, 2017

See below

Explanation:

Since proofs work both ways, we can start from the #sf(RHS)# and prove the #sf(LHS)#.

#(tan x-sinx)/(tan x sinx)#

#=tanx/(tan x sinx)-sinx/(tan x sinx)#

#=1/sinx-1/tanx#

#=1/sinx-cosx/sinx#

#=(1-cosx)/sinx#

#therefore(tanx-sinx)/(tanxsinx)-=(1-cosx)/sinx#, as required. #square#