How do you solve #2sin(x)-3cot(x)-3csc(x)=0# for #x#?

2 Answers
Nov 13, 2017

#x=n360+-180, n360+-120#
#x=2n\pi+-\pi, 2n\pi+-(2\pi)/3#

Explanation:

The equation can be rewritten as #(2sinx)/1-(3cosx)/sinx-3/sinx=0#

If we multiply both sides by #sinx# we get #2sin^2x-3cosx-3=0#

Using the identity: #sin^2x+cos^2x-=1# We can find that #sin^2x-=1-cos^2x#

So, #2(1-cos^2x)-3cosx-3=0#

#2-2cos^2x-3cosx-3=-2cos^2x-3cosx-1=0#

#2cos^2x+3cosx+1=0#

By substituting #x# for #cos# we get: #2x^2+3x+1=0#

#x=(-b+-sqrt(b^2-4ac))/(2a)#

#x=(-3+sqrt(3^2-4(2*1)))/(2(2))=-1/2#

#x=(-3-sqrt(3^2-4(2*1)))/(2(2))=-1#

#cosx=-1 or -1/2#

#x=arccos(-1)=180#
#x=arccos(-1/2)=120#

However, #cos(360+180)=-1# and #cos(360-120)=-1/2#

#x=n360+-180, n360+-120#
#x=2n\pi+-\pi, 2n\pi+-(2\pi)/3#

Nov 13, 2017

For #x in [0,pi)#
#color(white)("XXX")x=(2pi)/3#

Explanation:

Note that neither #cot(x)# nor #csc(x)# are defined for #x=kpi, k in ZZ#

So the given equation
#color(white)("XXX")2sin(x)-3cot(x)-3csc(x)=0#
is not valid for #x=0#

Multiplying by #sin(x)#
#color(white)("XXX")2sin^2(x)-3cos(x)-3=0#

#color(white)("XXX")2(1-cos^2(x))-3cos(x)-3=0#

#color(white)("XXX")-2cos^2(x)-3cos(x)-1=0#

#color(white)("XXX")2cos^2(x)+3cos(x)+1=0#

#color(white)("XXX")(2cos(x)+1)(cos(x)+1)=0#

#color(white)("XXX"){: ((2cos(x)+1)=0," or ",(cos(x)+1)=0), (rarr cos(x)=-1/2,,rarr cos(x)=-1), (rarr x = (2pi)/3,,rarr x=pi), (color(white)("xxxxx")"for " x in [0,pi],,color(white)("xxxxx")"for " x in [0,pi]), (,,"BUT the given expression is not defined for this value of "x) :}#