How do you find the integral of #cos^5(3x)dx#?

1 Answer
Mar 9, 2016

#=1/3(sin(3x)-2(sin(3x))^3/3+(sin(3x))^5/5)+C#

Explanation:

First let #u = 3x, du = 3dx# to simplify the integral. Then we have:

#1/3##intcos^5(u)du#

Since the power of cos(u) is odd, we can use the procedure of saving one #cos(u)# and using the identity #cos(u)^2=(1-sin^2(u))#

#=># #1/3##int(1-sin^2(u))^2cos(u)du#

Remember we made it #(1-sin^2(u))^2# all squared because our original function is #cos(u)^4#

After this we need to use another substitution. For this time: let #z = sin(u)#, #dz = cos(u)du#

#=># #1/3##int(1-z^2)^2dz#

Now it's a simple polynomial integral we can evaluate it straightforwardly

#=# #1/3##int(1-2z^2+z^4)dz#

#=1/3(z-2z^3/3+z^5/5)+C#

We started with #x# we substitute back to #x#

#=1/3(sin(u)-2(sin(u))^3/3+(sin(u))^5/5)+C#
#=1/3(sin(3x)-2(sin(3x))^3/3+(sin(3x))^5/5)+C#