What are the points of inflection of #f(x)= e^(2x) - e^x #?

1 Answer
Nov 21, 2016

#x=-ln4#
#xapprox -1.3863#

Explanation:

Points of inflection occur when the second derivative is equal to zero. Find this by first differentiating #f(x)# to get #f'(x)#, then differentiating #f'(x)# to get #f''(x)#.

#f(x)=e^(2x)-e^x#

#f'(x)=2e^(2x)-e^x#

#f''(x)=4e^(2x)-e^x#

Set #f''(x)# equal to zero to find possible points of inflection:
#0=4e^(2x)-e^x#
#e^x=4e^(2x)#
Rewrite as a natural log:
#x=ln(4e^(2x))#
#x=ln4 + ln(e^(2x))#
#x=ln4+2xlne#
#x=ln4+2x#
#-x=ln4#

#x=-ln4#
#xapprox -1.3863#
Check if this is a point of inflection by making sure #f''(x)# is positive on one side of the x value, and negative on the other (make a sign chart):
#"- "x=-ln4" +"#

Therefore, #x=-ln4# is the point of inflection of #f(x)=e^(2x)-e^x#