How does Gibbs free energy relate to spontaneity?

1 Answer
May 21, 2014

In thermodynamics, the Gibbs free energy is a thermodynamic potential that measures the "usefulness" or process-initiating work obtainable from a thermodynamic system at a constant temperature and pressure (isothermal, isobaric). Just as in mechanics, where potential energy is defined as capacity to do work, similarly different potentials have different meanings.
The Gibbs free energy (SI units J/mol) is the maximum amount of non-expansion work that can be extracted from a closed system; this maximum can be attained only in a completely reversible process. When a system changes from a well-defined initial state to a well-defined final state, the Gibbs free energy ΔG equals the work exchanged by the system with its surroundings, minus the work of the pressure forces, during a reversible transformation of the system from the same initial state to the same final state.

Gibbs energy is also the chemical potential that is minimized when a system reaches equilibrium at constant pressure and temperature.

A spontaneous process is the time-evolution of a system in which it releases free energy (usually as heat) and moves to a lower, more thermodynamically stable energy state.The sign convention of changes in free energy follows the general convention for thermodynamic measurements, in which a release of free energy from the system corresponds to a negative change in free energy, but a positive change for the surroundings.

Depending on the nature of the process, the free energy is determined differently. For example, the Gibbs free energy is used when considering processes that occur under constant pressure and temperature conditions whereas the Helmholtz free energy is used when considering processes that occur under constant volume and temperature conditions.

A spontaneous process is capable of proceeding in a given direction, as written or described, without needing to be driven by an outside source of energy. The term is used to refer to macro processes in which entropy increases; such as a smell diffusing in a room, ice melting in lukewarm water, salt dissolving in water, and iron rusting.