How do I evaluate the indefinite integral #intsin(x)/(cos^3(x))dx# ?
1 Answer
Jul 30, 2014
#=1/2*1/(cos^2(x))+c# , where#c# is a constantExplanation
#=intsin(x)/(cos^3(x))dx# Using Trigonometric Substitution,
let's assume
#cos(x)=t# ,#=># #-sin(x)dx=dt#
#=int-dt/t^3#
#=-intt^-3dt#
#=-t^-2/(-2)+c# , where#c# is a constantsubstituting back the value of
#t# ,
#=1/2*1/(cos^2(x))+c# , where#c# is a constant