How do I find the integral #intcos(x)/(sin^2(x)+sin(x))dx# ?

1 Answer
Aug 10, 2014

#=ln(sinx/(sin(x)+1))+c#, where #c# is a constant

Full Answer

#=intcos(x)/(sin^2(x)+sin(x))dx#

#=intcos(x)/(sin(x)(sin(x)+1))dx#

let's #sin(x)=t#, then, #cos(x)dx=dt#

#=int1/(t(t+1))dt#

Using Partial Fractions,

#1/(t(t+1))=A/t+B/(t+1)# .............#(i)#

multiplying both sides with #t(t+1)#,

#1=A(t+1)+Bt#

#1=A+(A+B)t#

comparing constant and coefficient on both sides, we get

#A=1#,

#A+B=0#, which implies #B=-1#

plugging the values of #A# and #B# in #(i)#,

#1/(t(t+1))=1/t-1/(t+1)#

integrating both sides with respect to #t#,

#int1/(t(t+1))dt=int1/tdt-int1/(t+1)dt#

#=lnt-ln(t+1)+c#, where #c# is a constant

#=ln(t/(t+1))+c#, where #c# is a constant

substituting #t#, yields

#=ln(sinx/(sin(x)+1))+c#, where #c# is a constant