How do you find the derivative of #y= x/sqrt(x^2+1)# ?

1 Answer
Sep 4, 2014

#y'=1/(x^2+1)^(3/2)#

Solution :

#y=x/sqrt(x^2+1)#

Using Quotient Rule, which is

#y=f/g#, then #y'=(gf'-fg')/(g^2)#

similarly following for the given problem, yields

#y'=(sqrt(x^2+1)-x*1/(2sqrt(x^2+1))*(2x))/(sqrt(x^2+1))^2#

#y'=(sqrt(x^2+1)-x^2/(sqrt(x^2+1)))/(x^2+1)#

#y'=((x^2+1)-x^2)/(x^2+1)^(3/2)#

#y'=1/(x^2+1)^(3/2)#