How do you use integration by parts to establish the reduction formula #intcos^n(x) dx = (1/n)cos^(n-1)(x)sin(x)+(n-1)/nintcos^(n-2)(x)dx# ?

1 Answer
Sep 11, 2014

Let
#I=int cos^nxdx#.

Let #u=cos^{n-1}x# and #dv=cosxdx#
#Rightarrow du=-(n-1)cos^{n-2}x sinxdx# and #v=sinx#

By Integration by Parts,
#I=cos^{n-1}x sinx+(n-1)int cos^{n-2}xsin^2xdx#
By #sin^2x=1-cos^2x#,
#I=cos^{n-1}x sinx+(n-1)int cos^{n-2}x(1-cos^2x)dx#
By splitting the last integral,
#I=cos^{n-1}x sinx+(n-1)int cos^{n-2}xdx-(n-1)I#
By adding #(n-1)I#,
#nI=cos^{n-1}x sinx+(n-1)int cos^{n-2}xdx#
By dividing by #n#,
#I=1/ncos^{n-1}xsinx+{n-1}/nintcos^{n-2}xdx#