How do I find the binomial expansion of #(2x+1)^4#?

1 Answer
Sep 28, 2014

Note that the notation for the binomial coefficients is incorrect . It should not look like a fraction. The fraction bar should be removed the numbers should be on top of each other vertically.

#=(4/0)(2x)^4(2)^0+(4/1)(2x)^3(2)^1+(4/2)(2x)^2(2)^2+(4/3)(2x)^1(2)^3+(4/4)(2x)^0(2)^4#

#=(1)(2x)^4+(4)(2x)^3(2)+(6)(2x)^2(2)^2+(4)(2x)(2)^3+(1)(2)^4#

#=(2x)^4+(4)(2x)^3(2)+(6)(2x)^2(2)^2+(4)(2x)(2)^3+(2)^4#

#=16x^4+64x^3+48x^2+64x+16#