#f'(x)=lim_(h->0) (f(x+h)-f(x))/h#
#f(x)=1/x#
#f(x+h)=1/(x+h)#
Make the substitutions for #f(x)# and #f(x+h)#
#f'(x)=lim_(h->0) (1/(x+h)-1/x)/h#
Find the least common denominator
#f'(x)=lim_(h->0) (1/(x+h) * x/x-1/x * (x+h)/(x+h))/h#
Simplify the numerator of the complex fraction
#f'(x)=lim_(h->0) (x/(x(x+h))-(x+h)/(x(x+h)))/h#
#f'(x)=lim_(h->0) ((x-(x+h))/(x(x+h)))/h#
Distribute the negative in the numerator
#f'(x)=lim_(h->0) ((x-x-h)/(x(x+h)))/h#
Simplify the numerator
#f'(x)=lim_(h->0) ((-h)/(x(x+h)))/h#
Division is equivalent to multiplying by the reciprocal
#f'(x)=lim_(h->0) (-h)/(x(x+h))*1/h#
Cancel the factors of #h# and simplify
#f'(x)=lim_(h->0) (-1)/(x(x+h))#
Substitute in the value of 0 for #h# and simplify
#=(-1)/(x(x+0))#
#=-1/(x(x))#
#=-1/x^2#
See the video below.
Limit of derivative of #f(x)=1/x#