Question #38b86

1 Answer
Jan 24, 2015

The interplanar distance #d# is given by:

#d=(a)/(sqrt(h^2+k^2+l^2)#

Where #a# is the lattice parameter.

For the (1, 0, 1) case:

#d_1 = (a)/(sqrt(1^2+0+1^2))=(a)/(sqrt(2))#

For the (1, 1, 1) case:

#d_2=(a)/(sqrt(1^2+1^2+1^2))=(a)/(sqrt(3))#

So #(d_1)/(d_2)= (a)/(sqrt2)xx(sqrt3)/a#

#(d_1)/(d_2)=(sqrt3)/(sqrt2)#

So #d_1/d_2=(1.732)/(1.414)=1.22#

This shows, therefore, that #d_1>d_2#