How do I simplify (2sqrt(x)*sqrt(x^3))/sqrt(64x^15)?

1 Answer
Jan 29, 2015

(2sqrt(x)*sqrt(x^3))/sqrt(64x^15)
1. Note: sqrt(x)*sqrt(x^3) = x^2

--> (2sqrt(x)*sqrt(x^3))/sqrt(64x^15) = (2x^2)/sqrt(64x^15)

  1. Note: sqrt(64x^15) = 8x^7sqrt(x)

--> (2x^2)/sqrt(64x^15) = (2x^2) / (8x^7sqrt(x))

  1. Now rationalize the denominator

--> (2x^2) / (8x^7sqrt(x)) * sqrt(x)/sqrt(x) = (2x^2sqrt(x)) / (8x^7*x) = (2x^2sqrt(x)) / (8x^8) = (sqrt(x)) / (4x^6)