What is #cos(pi/12)#?

1 Answer
Feb 19, 2015

The answer is: #(sqrt6+sqrt2)/4#

Remembering the formula:

#cos(alpha/2)=+-sqrt((1+cosalpha)/2)#

than, since #pi/12# is an angle of the first quadrant and its cosine is positive so the #+-# becomes #+#,

#cos(pi/12)=sqrt((1+cos(2*(pi)/12))/2)=sqrt((1+cos(pi/6))/2)=#

#=sqrt((1+sqrt3/2)/2)=sqrt((2+sqrt3)/4)=sqrt(2+sqrt3)/2#

And now, remembering the formula of the double radical:

#sqrt(a+-sqrtb)=sqrt((a+sqrt(a^2-b))/2)+-sqrt((a-sqrt(a^2-b))/2)#

useful when #a^2-b# is a square,

#sqrt(2+sqrt3)/2=1/2(sqrt((2+sqrt(4-3))/2)+sqrt((2-sqrt(4-3))/2))=#

#1/2(sqrt(3/2)+sqrt(1/2))=1/2(sqrt3/sqrt2+1/sqrt2)=1/2(sqrt6/2+sqrt2/2)=#

#(sqrt6+sqrt2)/4#