How do you find the integral of #1/sqrt(1-4x^2)dx#?

2 Answers
Feb 28, 2015

We can evaluate this integral by using a trigonometric substitution.

Let #sintheta =2x # Then

#x=1/2sintheta #

differentiate

#dx=1/2costheta d theta #

Make substitution

#1/2intcostheta/(sqrt(1-4(1/2sintheta)^2))d theta#

#1/2intcostheta/(sqrt(1-4(1/4sin^2theta)))d theta #

#1/2intcostheta/(sqrt(1-sin^2theta))d theta #

#1/2intcostheta/(sqrt(cos^2theta))d theta #

#1/2intcostheta/(costheta)d theta #

#1/2intd theta #

Integrating we have #1/2theta#

Defining #theta # in terms of #x#

#theta=arcsin(2x) # Therefore

#1/2arcsin(2x)+C #

Feb 28, 2015

The answer is: #1/2arcsin2x+c#.

Remembering that:

#int(f'(x))/sqrt(1-[f(x)]^2)dx=arcsinf(x)+c#,

so:

#int1/sqrt(1-4x^2)dx=int1/sqrt(1-(2x)^2)dx=1/2int2/(sqrt(1-(2x)^2))dx=#

#=1/2arcsin2x+c#.