How do you integrate #∫ (tan2x + tan4x) dx#?  

1 Answer
Mar 9, 2015

Re-write it and use substitution.

#int(tan2x+tan4x)dx=int((sin2x)/(cos2x)+(sin4x)/(cos4x))dx#.

Now do the integrals seperately:

#int(sin2x)/(cos2x)dx#.

Let #u=cos2x#. this makes #du=-2sin2x dx#, so #sin2x dx = -1/2du#.

#int(sin2x)/(cos2x)dx=-1/2int1/(cos2x)sin2x dx=-1/2 int 1/udu#

So, #int(sin2x)/(cos2x)dx=-1/2 ln abs (cos 2x)#.

In a similar way the second integral is found to be

#int(sin4x)/(cos4x)dx=-1/4 ln abs (cos 4x)#.

So,
#int(tan2x+tan4x)dx=-1/2 ln abs (cos 2x)-1/4 ln abs (cos 4x)+C#.

Of course, there are many way of rewriting this expression..