How do you show that the derivative of #arctan(tanhx) = sech (2x)#?

1 Answer
Mar 17, 2015

The Chain Rule implies that

#\frac{d}{dx}(\arctan(\tanh(x)))=\frac{1}{1+\tanh^{2}(x)}\cdot \frac{d}{dx}(\tanh(x)).#

Since #\frac{d}{dx}(\tanh(x))=\sech^{2}(x)#, this becomes

#\frac{d}{dx}(\arctan(\tanh(x)))=\frac{\sech^{2}(x)}{1+\tanh^{2}(x)}.#

To see that this equals #\sech(2x)#, you could note that

#\sech(2x)=\frac{1}{\cosh(2x)}=\frac{2}{e^{2x}+e^{-2x}}#

and

#\frac{\sech^{2}(x)}{1+\tanh^{2}(x)}=\frac{\frac{1}{cosh^2(x)}}{1+\frac{\sinh^{2}(x)}{\cosh^{2}(x)}}=\frac{1}{\cosh^{2}(x)+\sinh^{2}(x)}#

But this is the same as

#\frac{1}{(\frac{e^{x}+e^{-x}}{2})^2+(\frac{e^{x}-e^{-x}}{2})^2}=\frac{4}{e^{2x}+2+e^{-2x}+e^{2x}-2+e^(-2x)}=\frac{2}{e^{2x}+e^{-2x}}.#