How do you multiply #sqrt(2xy^3)*sqrt(4x^2y^7)#?

2 Answers
Mar 24, 2015

You can take one big root:
#sqrt(2*4x^(1+2)y^(3+7))=sqrt(2*4*x^3y^10)=(2*2^2x^3y^10)^(1/2)=#
#=2^(1/2)*2^(2*1/2)x^(3*1/2)y^(10*1/2)=#
where you used the fact that #sqrt(x)=x^(1/2)#
#=2xy^5sqrt(2x)#

Mar 24, 2015

Remember that if the exponents of two radicals are equal the arguments of the radicals can be multiplied under the same radical exponent.
That is
#root(a)(b) xx root(a)(c) = root(a)(b xx c)#

So
#sqrt(2xy^3) * sqrt(4x^2y^7)#

#= sqrt( 8x^3y^10)#

In this particular example some roots can be extracted:
#sqrt(8x^3y^10) = sqrt(color(red)(2)^2(2)* (color(red)(x)^2) (x) * (color(red)(y^5)^2)#

#= color(red)(2xy^5) sqrt(2x)#