Multiply the top and bottom by #\sqrt{6}-\sqrt{5}# to get #5/(\sqrt{6}+\sqrt{5})=\frac{5(\sqrt{6}-\sqrt{5})}{6-5}=5\sqrt{6}-5\sqrt{5}#.
In general, #\frac{a}{\sqrt{b}+\sqrt{c}}=\frac{a(\sqrt{b}-\sqrt{c})}{b-c}# when #b# is not equal to #c#. In the case where #b=c>0#, then #\frac{a}{\sqrt{b}+\sqrt{c}}=\frac{a}{2\sqrt{b}}=\frac{a\sqrt{b}}{2b}#.