How do you solve #x(x^2-3x)^(1/3) + 2(x^2-3x)^(4/3) = 0#?

1 Answer
Apr 10, 2015

Temporarily replace #(x^2-3x)# with #k#

#x(x^2-3x)^(1/3)+2(x^2-3x)^(4/3) = 0#

can be re-written (using the temporary substitution) as
#x*k^(1/3) + 2k*k^(1/3) = 0#

#(k^(1/3))*(x+ 2(x^2-3x)) = 0#

#(k^(1/3))*(2x^2 - 5x) = 0#

One of the terms
#k^(1/3) = root(3)(x^2-3x)#
or
#2x^2-5x#
must equal #0#

#root(3)(x^2-3x)#
can only equal #0#
if #x^2-3x = 0#
#rarr x = 0#
or
#x=3#

#2x^2-5x#
can only equal #0#
if #x=0#
or
#x = 5/2#

Therefore #x epsilon { 0, 2 1/2, 3}#