What is the derivative of #f(x) = x/(1-ln(x-1))#?

1 Answer
Apr 10, 2015

#f'(x)=(2x-1-(x-1)ln(x-1))/((x-1)[(1-ln(x-1)]^2#

The complete solution is here

#f(x)=x/(1-ln(x-1)#

#f'(x)=(1(1-ln(x-1))-x(0-1/(x-1)))/([(1-ln(x-1)]^2#

#f'(x)=((x-1)[1-ln(x-1)]+x)/((x-1)[(1-ln(x-1)]^2#

#f'(x)=(x-1-(x-1)ln(x-1)+x)/((x-1)[(1-ln(x-1)]^2#

#f'(x)=(2x-1-(x-1)ln(x-1))/((x-1)[(1-ln(x-1)]^2#