How do you integrate #sin(2t+1)/(cos(2t+1)^2) dt#? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Tom Apr 11, 2015 #f(x)=int(sin(2t+1))/cos^2(2t+1)dt# Let's #u=2t+1# #du = 2# Now we have : #f(x)=1/2intsin(u)*cos^-2(u)du# #f(x)=-1/2int-sin(u)*cos^-2(u)du# #F(x)=1/2[cos^-1(u)]+C# #F(x) = 1/(2cos(2t+1))+C# Answer link Related questions How do I evaluate the indefinite integral #intsin^3(x)*cos^2(x)dx# ? How do I evaluate the indefinite integral #intsin^6(x)*cos^3(x)dx# ? How do I evaluate the indefinite integral #intcos^5(x)dx# ? How do I evaluate the indefinite integral #intsin^2(2t)dt# ? How do I evaluate the indefinite integral #int(1+cos(x))^2dx# ? How do I evaluate the indefinite integral #intsec^2(x)*tan(x)dx# ? How do I evaluate the indefinite integral #intcot^5(x)*sin^4(x)dx# ? How do I evaluate the indefinite integral #inttan^2(x)dx# ? How do I evaluate the indefinite integral #int(tan^2(x)+tan^4(x))^2dx# ? How do I evaluate the indefinite integral #intx*sin(x)*tan(x)dx# ? See all questions in Integrals of Trigonometric Functions Impact of this question 6403 views around the world You can reuse this answer Creative Commons License