How do you find the derivative of: #f(x)=sqrt(x+1)#, using the limit definition?
1 Answer
The details depend on whether you use
or,
For
You will need to evaluate one of:
or,
Using either from of the definition, you'll use:
For the first form of the definition, we get:
#=lim_(xrarra) ((sqrt(x+1) - sqrt(a+1)))/((x-a)) ((sqrt(x+1) +sqrt(a+1)))/((sqrt(x+1) + sqrt(a+1)))#
#= lim_(xrarra) ((x+1) - (a+1))/((x-a)(sqrt(x+1) + sqrt(a+1)))#
#= lim_(xrarra) 1/(sqrt(x+1) + sqrt(a+1)) = 1/(2sqrt(a+1)#
Using the second form of the definition is similar, but you'll end up with:
#= lim_(hrarr0) ( (x+1+h) - (x+1))/(h( sqrt(x+1+h) + sqrt(x+1)))#
#= lim_(hrarr0) (h)/(h( sqrt(x+1+h) + sqrt(x+1))) = 1/(2sqrt(x+1))#