How do you find the antiderivative #4 + 4tan^2x#? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer bp Apr 14, 2015 4tan x +C 4+4 #tan^2#x would be 4 (1 + #tan^2#x) or 4 #sec^2#x Antiderivative of #sec^2# x is tanx. Hence the required answer would be 4tanx+C Answer link Related questions How do I evaluate the indefinite integral #intsin^3(x)*cos^2(x)dx# ? How do I evaluate the indefinite integral #intsin^6(x)*cos^3(x)dx# ? How do I evaluate the indefinite integral #intcos^5(x)dx# ? How do I evaluate the indefinite integral #intsin^2(2t)dt# ? How do I evaluate the indefinite integral #int(1+cos(x))^2dx# ? How do I evaluate the indefinite integral #intsec^2(x)*tan(x)dx# ? How do I evaluate the indefinite integral #intcot^5(x)*sin^4(x)dx# ? How do I evaluate the indefinite integral #inttan^2(x)dx# ? How do I evaluate the indefinite integral #int(tan^2(x)+tan^4(x))^2dx# ? How do I evaluate the indefinite integral #intx*sin(x)*tan(x)dx# ? See all questions in Integrals of Trigonometric Functions Impact of this question 3130 views around the world You can reuse this answer Creative Commons License