How do you simplify #(2sqrt 8 + 7sqrt8)/(1 - sqrt2)#?

2 Answers
Apr 15, 2015

We can add the terms in the numerator and then rationalize:
#(9sqrt(8))/(1-sqrt(2))*(1+sqrt(2))/(1+sqrt(2))=#
#=(9sqrt(8)(1+sqrt(2)))/(1-2)=#
#=-9sqrt(4*2)(1+sqrt(2))=#
#=-18sqrt(2)(1+sqrt(2))#

Apr 15, 2015
  1. Simplify the numerator.
  2. Multiply the numerator and denominator by the conjugate of the denominator.
  3. Simplify a bit more.

Step 1
#2sqrt(8)+7sqrt(8)#
#= 9sqrt(8)#
#=9sqrt(2^*2)#
#=18sqrt(2)#

Step2
#(18sqrt(2))/(1-sqrt(2)) * (1+sqrt(2))/(1+sqrt(2))#

#= (18sqrt(2)+36)/(1-(sqrt(2)^2)#

Step 3
#= - (36+18sqrt(2))#