This is a possible way, I don't know if it is the easier o faster, but it is enjoying:
#y=tanx#
#y^((1))=1+tan^2x=1+y^2#
#y^((2))=2y*y^((1))=2y*(1+y^2)=2y+2y^3#
#y^((3))=2y^((1))+6y^2*y^((1))=2(1+y^2)+6y^2(1+y^2)=#
#=2+2y^2+6y^2+6y^4=2+8y^2+6y^4#
#y^((4))=16yy^((1))+24y^3y^((1))=16y(1+y^2)+24y^3(1+y^2)=#
#=16y+16y^3+24y^3+24y^5=16y+40y^3+24y^5#
#y^((5))=16y^((1))+120y^2y^((1))+120y^4y^((1))=#
#=16(1+y^2)+120y^2(1+y^2)+120y^4(1+y^2)=#
#=16+16y^2+120y^2+120y^4+120y^4+120y^6=#
#=16+136y^2+240y^4+120y^6=#
#=16+136tan^2x+240tan^4x+120tan^6x#.
I hope that it is correct, and... enjoying...