What is the integral of #[ln(lnx)]/[x] dx#?

1 Answer

I got:

#lnx*ln(lnx) - lnx + C#


#f(x) = ln(lnx)/x#

Now we can do some unusual substitution...

First, recognize that #d(lnx) = 1/xdx#. Then, realize that #1/xdx# is in there. So, we have:

#f(u) = ln(u)du#
where #u = lnx# and #du = 1/xdx#.

Further considerations lead to using integration by parts on #int lnudu#. Let:

#s = lnu#
#ds = 1/udu#
#dt = du#
#t = u#

#intln(u)du#

#= st - int tds#

#= u*lnu - int u*1/udu#

#= u*lnu - u#

#= color(blue)(lnx*ln(lnx) - lnx + C)#