How do you multiply: #(a-5)(a^2+5a+25)#?

1 Answer
Apr 27, 2015
  • We know the identity
    #color(blue)(x^3 - y^3 = (x-y)(x^2+xy+y^2)#

The expression given to us is in the form #(x-y)(x^2+xy+y^2)# where:
#x = a, and y =5#

Hence the expression can directly be written as #a^3 - 5^3 = color(green)(a^3 - 125#

  • But if we are not familiar with the identity we can use the Distributive Property of Multiplication to solve this expression

#(a-5)(a^2+5a+25)#

#a*(a^2+5a+25) - 5(a^2+5a+25)#

# = (a*a^2) +(a*5a) +(a*25) - (5*a^2) - (5*5a) - (5*25)#

# = a^3 + cancel(5a^2) +cancel(25a) - cancel(5a^2) - cancel(25a) - 125#

#color(green)( = a^3 - 125#