How do you use the definition of derivative in terms of limits, prove that the derivative of #x^n = nx^(n-1)#?

2 Answers
Apr 29, 2015

Definition of Derivative
#f'(x) = lim_(hrarr 0) (f(x+h)-f(x))/h#

For #f(x) = x^n#

#lim_(hrarr0) ((x+h)^n - x^n)/h#

#lim_(hrarr0) (x^n +nh^1x^(n-1) + h^2(...) -x^n)/h#

#lim_(harr0) nx^(n-1) + h(...)#

#= nx^(n-1)#

Apr 29, 2015

Using the alternative definition of derivative:

#f'(a) = lim_(xrarra) (f(x)-f(a))/(x-a)#

For #f(x) = x^n# with #n# a positive integer:

Note that:
#x^n-a^n = (x-a)(x^(n-1)+x^(n-2)a+x^(n-3)a^2 + * * * +xa^(n-2)+a^(n-1))#

So:

#f'(a) = lim_(xrarra) (f(x)-f(a))/(x-a)#

#color(white)"sssss"# # = lim_(xrarra) (x^n-a^n)/(x-a)#

#=lim_(xrarra) ((x-a)(x^(n-1)+x^(n-2)a+x^(n-3)a^2 + * * * +xa^(n-2)+a^(n-1)))/(x-a)#

#=lim_(xrarra) (x^(n-1)+x^(n-2)a+x^(n-3)a^2 + * * * +xa^(n-2)+a^(n-1))#

#=a^(n-1)+a^(n-2)a+a^(n-3)a^2 + * * * +aa^(n-2)+a^(n-1)#

There are #n# factor, each of which has limit #a^(n-1)#, so the limit is

#f'(a) = na^(n-1)#

Because this holds for arbitrary #a#, it holds for all #x# and

#f'(x) = nx^(n-1)#