How do you integrate #int (x^4)/(x^(5)+1) #? Calculus Introduction to Integration Integrals of Rational Functions 1 Answer Antoine May 5, 2015 #int(x^4dx)/(x^5+1)=1/5ln(x^5+1) +C# Method #int(x^4dx)/(x^5+1)= 1/5int(5x^4dx)/(x^5+1)= 1/5int(d(x^5+1))/(x^5+1)= " I"# NB: #d(x^5+1)# simply means that the derivative of #x^5+1# is #5x^4# Now, you could as well let #u=x^5+1# So that, #"I"=1/5int(du)/u=1/5lnu=1/5ln(x^5+1) +C# Answer link Related questions How do you integrate #(x+1)/(x^2+2x+1)#? How do you integrate #x/(1+x^4)#? How do you integrate #dx / (2sqrt(x) + 2x#? What is the integration of #1/x#? How do you integrate #(1+x)/(1-x)#? How do you integrate #(2x^3-3x^2+x+1)/(-2x+1)#? How do you find integral of #((secxtanx)/(secx-1))dx#? How do you integrate #(6x^5 -2x^4 + 3x^3 + x^2 - x-2)/x^3#? How do you integrate #((4x^2-1)^2)/x^3dx #? How do you integrate #(x+3) / sqrt(x) dx#? See all questions in Integrals of Rational Functions Impact of this question 5479 views around the world You can reuse this answer Creative Commons License