How do you integrate #inte^(cos)(t) (sin 2t) dt# between #a = 0#, #b = pi#?

1 Answer
May 14, 2015

This integral has to be done with the theorem of the integration by parts, that says:

#intf(x)g'(x)dx=f(x)g(x)-intg(x)f'(x)dx#.

We have to remember also the double-angle formula of sinus, that says:

#sin2alpha=2sinalphacosalpha#.

So, the integral becomes:

#2int_0^pie^costsintcostdt=-2int_0^pie^cost(-sint)*costdt=(1)#

We can assume that:

#f(t)=cost# and #g'(t)dx=e^cost(-sint)dt#.

So:

#f'(t)dt=-sintdt#

#g(t)=e^cost# and this is because #inte^f(x)f'(x)dx=e^f(x)+c#.

Then:

#(1)=-2{[cost(e^cost)]_0^pi-int_0^pie^cost(-sint)dt}=#

#=-2[coste^cost-e^cost]_0^pi=#

#=-2(cospie^cospi-e^cospi-(cos0e^cos0-e^cos0))=#

#=-2(-e^-1-e^-1-e+e)=4/e#.