How do you rationalize # 3 / (sqrt5 -sqrt2) #?

1 Answer
May 14, 2015

You can rationalize the denominator by multiplying top and bottom by the conjugate #sqrt(5) + sqrt(2)# as follows:

#3/(sqrt(5)-sqrt(2))#

#= (3*(sqrt(5)+sqrt(2)))/((sqrt(5)-sqrt(2))(sqrt(5)+sqrt(2))#

#= (3*(sqrt(5)+sqrt(2)))/(sqrt(5)sqrt(5)-sqrt(2)sqrt(2))#

#= (3*(sqrt(5)+sqrt(2)))/(5-2)#

#= (3*(sqrt(5)+sqrt(2)))/3#

#= sqrt(5)+sqrt(2)#