How do you prove #(1-tanx)/(1+tanx) = (1-sin2x)/(cos2x)#?

1 Answer
May 19, 2015

Use the following facts:
#tanx=sinx/cosx#
#sin2x=2sinxcosx#
#cos2x=cos^2x-sin^2x#
#sin^2x+cos^2x=1#

So you get:

#(1-sinx/cosx)/(1+sinx/cosx)=(1-2sinxcosx)/(cos^2x-sin^2x)#
#(cosx-sinx)/cancel(cosx)*cancel((cosx))/cancel((cosx+sinx))=(1-2sinxcosx)/((cosx-sinx)cancel((cosx+sinx)))#

Taking: #(cosx-sinx)# to the left side and using the fact that: #sin^2x+cos^2x=1#

#(cosx-sinx)^2=sin^2x+cos^2x-2sinxcosx# which are indeed equals.