How do you factor #x^3+27y^3#?
1 Answer
May 19, 2015
Use the identity: a^3 + b^3 = (a + b)(a^2 - ab + b^2)
Replace b^3 by 27y^3
x^3 + 27b^3 = (x + 3y)(x^2 - 3xy + 9y^2)
Use the identity: a^3 + b^3 = (a + b)(a^2 - ab + b^2)
Replace b^3 by 27y^3
x^3 + 27b^3 = (x + 3y)(x^2 - 3xy + 9y^2)