How do you differentiate #(t^2+2)/(6t-3)^7#?

1 Answer
Jun 2, 2015

We must use the quotient rule, which states that

Be #y=f(x)/g(x)#, then #(dy)/(dx)=(f'(x)g(x)-f(x)g'(x))/(g(x))^2#

Now, before starting, we can acknowledge all our four needed functions:

  • #f(t)=t^2+2#
  • #f'(t)=2t#

  • #g(t)=(6t-3)^7#

  • #g'(t)# demands chain rule, which states that #(dy)/(dx)=(dy)/(du)(du)/(dx)#, so #g'(t)=(7u^6)*6=color(green)(42(6t-3)^6)#

Thus,

#(dy)/(dt)=(2t(6t-3)^7-(t^2+2)(42(6t-3)^6))/(6t-3)^14=#

#=(2tcancel((6t-3)^7))/(6t-3)^(cancel(14)7)-((t^2+2)*42cancel((6t-3)^6))/(6t-3)^(cancel(14)8#

Considering #(6t-3)^8# our l.c.d.:

#(2t(6t-3)-42(t^2+2))/(6t-3)^8=(12t^2-6t-42t^2-84)/(6t-3)^8=color(Green)((-30t^2-6t-84)/(6t-3)^8)#