Where does the graph of y = 2x^2 + x − 15 cross the x-axis?

2 Answers
Jun 2, 2015

Cutting the #x# axis means #y=0#
Which means #2x²+x-15=0#

We are going to seek the #Delta# :
The equation is of the form #ax²+bx+c=0#
#a=2# ; #b=1# ; #c=-15#

#Delta=b²-4ac#
#Delta=1²-4*2*(-15)#
#Delta=1+120#
#Delta=121# ( #=sqrt11# )

#x_1=(-b-sqrtDelta)/(2a)#

#x_1=(-1-11)/4#

#x_1=-12/4#

#x_1=-3#

#x_2=(-b+sqrtDelta)/(2a)#

#x_2=(-1+11)/4#

#x_2=10/4#

#x_2=5/2#

Thus, the function cuts the #x# axis in #x=-3# and #x=5/2#

graph{2x^2+x-15 [-10, 10, -5, 5]}

Jun 2, 2015

#y = 2x^2+x-15 = (2x-5)(x+3)#

#y=0# when #x = 5/2# or #x=-3#

so the graph crosses the x-axis at #(-3, 0)# and #(5/2, 0)#