First note that #sin^6(x)+cos^6(x)# is a sum of two cubes #(sin^2(x))^3+(cos^2(x))^3# so it can be factored using #a^3+b^3=(a+b)(a^2-ab+b^2)# and the Pythagorean identity to get
#sin^6(x)+cos^6(x)=(sin^2(x))^3+(cos^2(x))^3#
#=(sin^2(x)+cos^2(x))(sin^4(x)-sin^2(x)cos^2(x)+cos^4(x))#
#=sin^4(x)-sin^2(x)cos^2(x)+cos^4(x)#.
Therefore,
# (sin^6 x + cos^6 x)/ (sin^2(x) cos ^2(x))= (sin^4(x)-sin^2(x)cos^2(x)+cos^4(x))/ (sin^2(x) cos ^2(x))#
#=tan^2(x)-1+cot^2(x)#
But #tan^2(x)=sec^2(x)-1# and #cot^2(x)=csc^2(x)-1#. Hence,
# (sin^6 x + cos^6 x)/ (sin^2(x) cos ^2(x))=sec^2(x)+csc^2(x)-3# and thus
#int (sin^6(x) + cos^6(x))/ (sin^2(x) cos ^2(x))\ dx=int sec^2(x)+csc^2(x)-3\ dx#
#=tan(x)-cot(x)-3x+C#