You can rewrite this carefully.
#= intx^2sqrt((2sqrtx)^2 + 3^2)dx#
Now it looks like #sqrt(a^2 + x^2)#, which resembles #sqrt(1 + tan^2theta)#.
Let:
#2sqrtx = 3tantheta#
#x = (9tan^2theta)/4#
#x^2 = (81tan^4theta)/16#
#sqrt((2sqrtx)^2 + 3^2) = sqrt(9tan^2theta + 9) = 3sectheta#
#dx = 9/4*2tanthetasec^2thetad theta = 9/2tanthetasec^2thetad theta#
#=> int(81tan^4theta)/16 3sectheta 9/2tanthetasec^2thetad theta#
#= 2187/32inttan^5thetasec^3thetad theta#
Notice how that constant is irreducible... Ugh. It looks a bit crazy, but it's just large numbers. Using some identities:
#= 2187/32int(sec^2theta - 1)^2sec^2thetasecthetatanthetad theta#
And some u-substitution. Let:
#u = sectheta#
#du = secthetatanthetad theta#
#= 2187/32int(u^2 - 1)^2u^2du#
#= 2187/32int(u^4 - 2u^2 + 1)u^2du#
#= 2187/32intu^6 - 2u^4 + u^2du#
#= 2187/32 (u^7/7 - 2/5u^5 + u^3/3)#
#= 2187/32 (sec^7theta/7 - 2/5sec^5theta + sec^3theta/3)#
Draw a right triangle if you want. Since #tantheta = (2sqrtx)/3#, and #sqrt((2sqrtx)^2 + 3^2) = sqrt(4x + 9)#, #sectheta = sqrt(4x+9)/3#:
#= 2187/32 ((4x+9)^(7/2)/(7*3^7) - 2/(5*3^5)(4x+9)^(5/2) + (4x+9)^(3/2)/(3*3^3))#
#= 2187/32 ((4x+9)^(7/2)/(15309) - 2/(1215)(4x+9)^(5/2) + (4x+9)^(3/2)/(81))#
#= 1/32 ((4x+9)^(7/2)/(7) - 18/(5)(4x+9)^(5/2) + 27(4x+9)^(3/2))#
#= 1/32(4x+9)^(3/2)[(4x+9)^(2)/7 - 18/5(4x+9) + 27] + C#
Now let's figure out how to make this look nicer. Get some common denominators, subtract in the numerator, and factor out #8/35#:
#= 1/32(4x+9)^(3/2)[(16x^2 + 72x + 81)/7 - 72/5x - 162/5 + 27]#
#= 1/32(4x+9)^(3/2)[(80x^2 + 360x + 405 - 504x - 1134 + 945)/35]#
#= 1/32(4x+9)^(3/2)[(80x^2 - 144x + 216)/35]#
#= (1*8)/(32*35)(4x+9)^(3/2)[10x^2 - 18x + 27]#
#= 1/140(4x+9)^("3/2")[10x^2 - 18x + 27] + C#