How do you solve #3 log_5 x - log_5 4 = log_5 16#?

1 Answer
Jun 18, 2015

The answer is #x=4#

Explanation:

To solve this equation you have to use the facts that:

  1. #a*log_b(c)=log_b(c^a)#
  2. #log_a(b)-log_a(c)=log_a (b/c)#

First you use (1) to get:

#log_5(x^3) -log_5(4)=log_5(16)#

Then you use (2) to get:

#log_5(x^3/4) =log_5(16)#

Now you can leave the logarithms (they both have the same base)

#x^3/4=16#

#x^3=64#

#x=4# (because #4^3=4*4*4=64#)