How do you multiply #(2sqrt21)(3sqrt6)#? Algebra Radicals and Geometry Connections Multiplication and Division of Radicals 1 Answer George C. Jun 19, 2015 #(2sqrt(21))(3sqrt(6)) = 6sqrt(21*6) = 6sqrt(9*14) = 18sqrt(14)# Explanation: #(2sqrt(21))(3sqrt(6))# #= 2*sqrt(21)*3*sqrt(6)# #=2*3*sqrt(21)*sqrt(6)# #=6*sqrt(21*6)# #=6*sqrt(9*14)# #=6*sqrt(9)*sqrt(14)# #=6*3*sqrt(14)# #=18sqrt(14)# If #a, b > 0# then #sqrt(ab) = sqrt(a)sqrt(b)# Answer link Related questions How do you simplify #\frac{2}{\sqrt{3}}#? How do you multiply and divide radicals? How do you rationalize the denominator? What is Multiplication and Division of Radicals? How do you simplify #7/(""^3sqrt(5)#? How do you multiply #(sqrt(a) +sqrt(b))(sqrt(a)-sqrt(b))#? How do you rationalize the denominator for #\frac{2x}{\sqrt{5}x}#? Do you always have to rationalize the denominator? How do you simplify #sqrt(5)sqrt(15)#? How do you simplify #(7sqrt(13) + 2sqrt(6))(2sqrt(3)+3sqrt(6))#? See all questions in Multiplication and Division of Radicals Impact of this question 1491 views around the world You can reuse this answer Creative Commons License