How do you multiply #(10w - 1)(10w + 1)#? Algebra Polynomials and Factoring Multiplication of Polynomials by Binomials 1 Answer Don't Memorise Jul 1, 2015 # =color(blue)( 100w^2 - 1# Explanation: #(10w - 1)(10w + 1)# The expression is of the form: #color(blue)( (a-b)(a+b) = a^2 - b^2 # Here #color(blue)(a=10w, b=1# # = (10w - 1)(10w + 1)# # = (10w)^2 - 1^2# # =color(blue)( 100w^2 - 1# Answer link Related questions What is FOIL? How do you use the distributive property when you multiply polynomials? How do you multiply #(x-2)(x+3)#? How do you simplify #(-4xy)(2x^4 yz^3 -y^4 z^9)#? How do you multiply #(3m+1)(m-4)(m+5)#? How do you find the volume of a prism if the width is x, height is #2x-1# and the length if #3x+4#? How do you multiply #(a^2+2)(3a^2-4)#? How do you simplify #(x – 8)(x + 5)#? How do you simplify #(p-1)^2#? How do you simplify #(3x+2y)^2#? See all questions in Multiplication of Polynomials by Binomials Impact of this question 2103 views around the world You can reuse this answer Creative Commons License