How do you simplify (12xy^4)/(8x^2y^3)12xy48x2y3?

1 Answer
Jul 6, 2015

(3y)/(2x)3y2x with (x!=0, y!=0)(x0,y0)

Explanation:

(12xy^4)/(8x^2y^3)12xy48x2y3 Note : (x!=0, y!=0)(x0,y0)

Decompose the expression :

(12xy^4)/(8x^2y^3) = (2*2*3*x*y*y*y*y)/(2*2*2*x*x*y*y*y)12xy48x2y3=223xyyyy222xxyyy

And cancels pairs :

(color(green)(cancel(2)*cancel(2)*3)*color(blue)(cancel(x))*color(red)(cancel(y)*cancel(y)*cancel(y)*y))/(color(green)(cancel(2)*cancel(2)*2)*color(blue)(cancel(x)*x)*color(red)(cancel(y)*cancel(y)*cancel(y))) = (3y)/(2x)

Then : (12xy^4)/(8x^2y^3) = (3y)/(2x) with (x!=0, y!=0)