In matrix multiplication, is (A-B)(A+B) = A^2-B^2?

1 Answer
Jul 9, 2015

No, because matrix multiplication is not commutative in general, so

(A-B)(A+B) = A^2+AB-BA+B^2

is not always equal to A^2-B^2

Explanation:

Since matrix multiplication is not commutative in general, take any two matrices A, B such that AB != BA.

Then AB-BA != 0 so

(A-B)(A+B) = A^2+AB-BA+B^2 != A^2+B^2

For example, let A=((1, 0), (0, 0)) and B=((0, 1), (0, 0))

Then AB = ((0, 1), (0, 0)) = B, but BA = ((0, 0), (0, 0))

(A-B)(A+B) = ((1, -1), (0, 0))((1, 1), (0, 0)) =((1, 1), (0, 0))

A^2-B^2 = ((1, 0), (0, 0)) - ((0, 0), (0, 0)) = ((1, 0), (0, 0))