What is the antiderivative of #-5e^(x-1)#? Calculus Introduction to Integration Integrals of Exponential Functions 1 Answer GiĆ³ · Antoine Jul 23, 2015 I found: #-5e^(x-1)+c# Explanation: You have: #int-5e^(x-1)dx=-5inte^(x-1)dx=# but #d[(x-1)]=dx# so you can write: #-5inte^(x-1)d(x-1)=# #=-5e^(x-1)+c# Answer link Related questions How do you evaluate the integral #inte^(4x) dx#? How do you evaluate the integral #inte^(-x) dx#? How do you evaluate the integral #int3^(x) dx#? How do you evaluate the integral #int3e^(x)-5e^(2x) dx#? How do you evaluate the integral #int10^(-x) dx#? What is the integral of #e^(x^3)#? What is the integral of #e^(0.5x)#? What is the integral of #e^(2x)#? What is the integral of #e^(7x)#? What is the integral of #2e^(2x)#? See all questions in Integrals of Exponential Functions Impact of this question 1939 views around the world You can reuse this answer Creative Commons License