How do you find the derivative with a square root in the denominator #y= 5x/sqrt(x^2+9)#?

1 Answer
Aug 4, 2015

#dy/dx=(10(x^2+9)-5x)/(sqrt(x^2+9)(2x^2+18))#

Explanation:

The Quotient Rule says

#d/dx(f(x)/g(x))=(g(x)d/dx(f(x))-f(x)d/dx(g(x)))/(g(x))^2#

If we let #f(x) = 5x# and #g(x)=sqrt(x^2+9)#, so that
#f'(x)=5# and #g'(x)=1/2(x^2+9)^(-1/2)#, and
#(g(x))^2=x^2+9#. Plugging these results in the Quotient Rule, we then have

#dy/dx=d/dx(f(x)/g(x))=(5sqrt(x^2+9)-5x1/2(x^2+9)^(-1/2))/(x^2+9)#
#=((2 xx)/(2 xx))(5sqrt(x^2+9)-5x1/2(x^2+9)^(-1/2))/(x^2+9)#
#=((sqrt(x^2+9) xx)/(sqrt(x^2+9) xx))(10sqrt(x^2+9)-5x(x^2+9)^(-1/2))/(2x^2+18)#
#=(10(x^2+9)-5x)/(sqrt(x^2+9)(2x^2+18))#